题目内容

【题目】如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是(

A.①② B.①②③ C.①④ D.①②④

【答案】D.

【解析】

试题解析:如图:

∵AB为直径,

∴∠ADB=90°,

∴BD⊥AC,

而AB=CB,

∴AD=DC,所以①正确;

∵AB=CB,

∴∠1=∠2,

而CD=ED,

∴∠3=∠4,

∵CF∥AB,

∴∠1=∠3,

∴∠1=∠2=∠3=∠4,

∴△CBA∽△CDE,所以②正确;

∵△ABC不能确定为直角三角形,

∴∠1不能确定等于45°,

不能确定相等,所以③错误;

∵DA=DC=DE,

∴点E在以AC为直径的圆上,

∴∠AEC=90°,

∴CE⊥AE,

而CF∥AB,

∴AB⊥AE,

∴AE为⊙O的切线,所以④正确.

故选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网