题目内容
如图,A是以BC为直径的⊙O上一点,于点D,AD⊥BC过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求证:BF=EF;
(2)求证:PA是⊙O的切线;
(3)若FG=BF,且⊙O的半径长为3
,求BD和FG的长度.
(1)求证:BF=EF;
(2)求证:PA是⊙O的切线;
(3)若FG=BF,且⊙O的半径长为3
2 |
(1)证明:∵BC是⊙O的直径,BE是⊙O的切线,
∴EB⊥BC.
又∵AD⊥BC,
∴AD∥BE.
∵△BFC∽△DGC,△FEC∽△GAC,
∴
=
,
=
.
∴
=
.
∵G是AD的中点,
∴DG=AG.
∴BF=EF.
(2)证明:连接AO,AB,
∵BC是⊙O的直径,
∴∠BAC=90°.
在Rt△BAE中,由(1),知F是斜边BE的中点,
∴AF=FB=EF.
∴∠FBA=∠FAB.
又∵OA=OB,
∴∠ABO=∠BAO.
∵BE是⊙O的切线,
∴∠EBO=90°.
∵∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,
∴PA是⊙O的切线.
(3)过点F作FH⊥AD于点H,
∵BD⊥AD,FH⊥AD,
∴FH∥BC.
由(2),知∠FBA=∠BAF,
∴BF=AF.
由已知,有BF=FG,
∴AF=FG,即△AFG是等腰三角形.
∵FH⊥AD,
∴AH=GH.
∵DG=AG,
∴DG=2HG.
即
=
.
∵FH∥BD,BF∥AD,∠FBD=90°,
∴四边形BDHF是矩形,BD=FH.
∵FH∥BC,易证△HFG∽△DCG,
∴
=
=
.
即
=
=
=
.
∵⊙O的半径长为3
,
∴BC=6
.
∴
=
=
=
.
解得BD=2
.
∴BD=FH=2
.
∵
=
=
,
∴CF=3FG.
在Rt△FBC中,
∵CF=3FG,BF=FG,
∴CF2=BF2+BC2∴(3FG)2=FG2+(6
)2
解得FG=3(负值舍去)
∴FG=3.
∴EB⊥BC.
又∵AD⊥BC,
∴AD∥BE.
∵△BFC∽△DGC,△FEC∽△GAC,
∴
BF |
DG |
CF |
CG |
EF |
AG |
CF |
CG |
∴
BF |
DG |
EF |
AG |
∵G是AD的中点,
∴DG=AG.
∴BF=EF.
(2)证明:连接AO,AB,
∵BC是⊙O的直径,
∴∠BAC=90°.
在Rt△BAE中,由(1),知F是斜边BE的中点,
∴AF=FB=EF.
∴∠FBA=∠FAB.
又∵OA=OB,
∴∠ABO=∠BAO.
∵BE是⊙O的切线,
∴∠EBO=90°.
∵∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,
∴PA是⊙O的切线.
(3)过点F作FH⊥AD于点H,
∵BD⊥AD,FH⊥AD,
∴FH∥BC.
由(2),知∠FBA=∠BAF,
∴BF=AF.
由已知,有BF=FG,
∴AF=FG,即△AFG是等腰三角形.
∵FH⊥AD,
∴AH=GH.
∵DG=AG,
∴DG=2HG.
即
HG |
DG |
1 |
2 |
∵FH∥BD,BF∥AD,∠FBD=90°,
∴四边形BDHF是矩形,BD=FH.
∵FH∥BC,易证△HFG∽△DCG,
∴
FH |
CD |
FG |
CG |
HG |
DG |
即
BD |
CD |
FG |
CG |
HG |
DG |
1 |
2 |
∵⊙O的半径长为3
2 |
∴BC=6
2 |
∴
BD |
CD |
BD |
BC-BD |
BD | ||
6
|
1 |
2 |
解得BD=2
2 |
∴BD=FH=2
2 |
∵
FG |
CG |
HG |
DG |
1 |
2 |
∴CF=3FG.
在Rt△FBC中,
∵CF=3FG,BF=FG,
∴CF2=BF2+BC2∴(3FG)2=FG2+(6
2 |
解得FG=3(负值舍去)
∴FG=3.
练习册系列答案
相关题目