题目内容
【题目】我们在过去的学习中已经发现了如下的运算规律:
(1)15×15=1×2×100+25=225;
(2)25×25=2×3×100+25=625;
(3)35×35=3×4×100+25=1225;
……
按照这种规律,第n个式子可以表示为
A. n×n=×(+1)×100+25=n2
B. n×n=×(+1)×100+25=n2
C. (n+5)×(n+5)=n×(n+1)×100+25=n2+10n+25
D. (10n+5)×(10n+5)=n×(n+l)×l00+25=100n2+100n+25
【答案】D
【解析】
根据已知的等式即可判断规律.
∵(1)15×15=1×2×100+25=225,即(10+5)×(10+5)=1×(1+l)×l00+25=100+100+25
(2)25×25=2×3×100+25=625即(10×2+5)×(10×2+5)=2×(2+l)×l00+25=100×22+100×2+25
(3)35×35=3×4×100+25=1225即(10×3+5)×(10×3+5)=2×(3+l)×l00+25=100×32+100×3+25
∴第n个式子可以为(10n+5)×(10n+5)=n×(n+l)×l00+25=100n2+100n+25
故选D.
练习册系列答案
相关题目