题目内容

【题目】如图,ABCDEF都是等腰直角三角形,∠ACB=EFD=90,DEF,的顶点EABC的斜边AB的中点重合.将DEF绕点E旋转,旋转过程中,线段AC与线段EF相交于点Q,射线ED与射线BC相交于点P.

(1)求证:AEQ∽△BPE;

(2)求证:PE平分∠BPQ;

(3)AQ=2,AE=,求PQ的长.

【答案】(1)证明见解析;(2)证明见解析;(3)5

【解析】

(1)求出A=B=DEF=45和AEQ=BPE ,即可证明相似.

(2)证明AEQ∽△EPQ,推出EPQ=BPE即可解答.

(3) 过点E作EHBP于点H, 根据条件求出AEQ∽△BPE,推出PE,再利用相似解答.

解:(1)证明:ABC和DEF都是等腰直角三角形,

∴∠A=B=DEF=45,

PEB+AEQ=PEB+EPB=180-45=135

∴∠AEQ=BPE

∴△AEQ∽△BPE;

(2)∵△AEQ∽△BPE,∴∠AEQ=BPE,,

而AE=BE,,…

∵∠A=DEF=45,

∴△AEQ∽△EPQ,

∴∠AEQ=EPQ,∴∠EPQ=BPE,

即PE平分BPQ;

(3)过点E作EHBP于点H,AQ=2,AE=

AE=BE=,ACB=90,AC=BC,由勾股定理易得AC=BC=6,

∵∠B=45,BE=,易得EH=BH=3

∵△AEQ∽△BPE,

PH=BP-BH=9-3=6,

∵△AEQ∽△EPQ∽△BPE,

,.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网