题目内容
【题目】有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,O)的概率是 .
【答案】
【解析】解:∵x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根, ∴△>0,
∴[﹣2(a﹣1)]2﹣4a(a﹣3)>0,
∴a>﹣1,
将(1,O)代入y=x2﹣(a2+1)x﹣a+2得,a2+a﹣2=0,
解得(a﹣1)(a+2)=0,
a1=1,a2=﹣2.
可见,符合要求的点为0,2,3.
∴P= .
所以答案是: .
【考点精析】关于本题考查的求根公式和概率公式,需要了解根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=m/n才能得出正确答案.
练习册系列答案
相关题目