题目内容
【题目】如图,点D为⊙O上的一点,点C在直径BA的延长线上,并且∠CDA=∠CBD.
(1)求证:CD是⊙O的切线;
(2)过点B作O的切线,交CD的延长线于点E,若BC=12,tan∠CDA=,求BE的长.
【答案】(1)证明见解析;(2) BE的长为5.
【解析】试题分析: (1)如图,连接OD.欲证明CD是⊙O的切线,只需证明CD⊥OA即可.(2)通过相似三角形△EBC∽△ODC的对应边成比例列出关于BE的方程,通过解方程来求线段BE的长度即可.
试题解析:
(1)证明:连OD,OE,如图,∵AB为直径,∴∠ADB=90°,即∠ADO+∠1=90°,
又∵∠CDA=∠CBD,而∠CBD=∠1,∴∠1=∠CDA,∴∠CDA+∠ADO=90°,即∠CDO=90°,∴CD是⊙O的切线;
(2)解:∵EB为⊙O的切线,∴ED=EB,OE⊥DB,∴∠ABD+∠DBE=90°,∠OEB+∠DBE=90°,
∴∠ABD=∠OEB,∴∠CDA=∠OEB.而tan∠CDA=,∴tan∠OEB==,
∵Rt△CDO∽Rt△CBE,(1)证明:连OD,OE,如图,
∵AB为直径,∴∠ADB=90°,即∠ADO+∠1=90°,又∵∠CDA=∠CBD,而∠CBD=∠1,∴∠1=∠CDA,
∴∠CDA+∠ADO=90°,即∠CDO=90°,∴CD是⊙O的切线;∴,∴CD=×12=8,
在Rt△CBE中,设BE=x,∴(x+8)2=x2+122,解得x=5.即BE的长为5.
练习册系列答案
相关题目