题目内容
【题目】如图,将矩形纸片沿对角线折叠,点落在点处,交于点,连结.证明:(1)BF=DF.(2)若BC=8,DC=6,求BF的长。
【答案】(1)证明见解析;(2)BF=6.25;
【解析】(1)由折叠的性质知,CD=ED,BE=BC.∵四边形ABCD是矩形,∴AD=BC,AB=CD,∠BAD=90°,∴AB=DE,BE=AD,在△ABD与△EDB中,∵AB=DE,BE=AD,BD=BD,∴△ABD≌△EDB(SSS),∴∠EBD=∠ADB,∴BF=DF;
(2)在△ABD与△EDB中,∵∠AFB=∠EFD,∠A=∠E=90°,AB=DE,∴△ABF≌△EDF(AAS),∴AF=EF,设BF=x,则AF=FE=8﹣x,在Rt△AFB中,可得:BF2=AB2+AF2,即x2=62+(8﹣x)2,解得:x=6.25.故BF的长为6.25.
练习册系列答案
相关题目
【题目】某校初二年级数学考试,(满分为100分,该班学生成绩均不低于50分)作了统计分析,绘制成如图频数分布直方图和频数、频率分布表,请你根据图表提供的信息,解答下列问题:
分组 | 49.5~59.5 | 59.5~69.5 | 69.5~79.5 | 79.5~89.5 | 89.5~100.5 | 合计 |
频数 | 2 | a | 20 | 16 | 4 | 50 |
频率 | 0.04 | 0.16 | 0.40 | 0.32 | b | 1 |
(1)频数、频率分布表中a= ,b= ;(答案直接填在题中横线上)
(2)补全频数分布直方图;
(3)若该校八年级共有600名学生,且各个班级学生成绩分布基本相同,请估计该校八年级上学期期末考试成绩低于70分的学生人数.