题目内容
【题目】已知:如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点A出发,沿AB方向匀速运动,速度为1cm/s;过点P作直线PF∥AD,PF交CD于点F,过点F作EF⊥BD,且与AD、BD分别交于点E、Q;连接PE,设点P的运动时间为t(s)(0<t<10).
解答下列问题:
(1)填空:AB= cm;
(2)当t为何值时,PE∥BD;
(3)设四边形APFE的面积为y(cm2)
①求y与t之间的函数关系式;
②若用S表示图形的面积,则是否存在某一时刻t,使得S四边形APFE= S菱形ABCD?若存在,求出t的值;若不存在,请说明理由.
【答案】
(1)10
(2)解:∵在菱形ABCD中,∴AB∥CD,∠ADB=∠CDB,
又∵PF∥AD,
∴四边形APFD为平行四边形,
∴DF=AP=t,
又∵EF⊥BD于Q,且∠ADB=∠CDB,
∴∠DEF=∠DFE,
∴DE=DF=t,
∴AE=10﹣t,
当PE∥BD时,△APE∽△ABD,
∴ ,
∴ ,
∴t=5,
∴当t=5时,PE∥BD
(3)蛸:①∵∠FDQ=∠CDO,∠FQD=∠COD=90°,
∴△DFQ∽△DCO.
∴ ,
即 ,
∴ .
∴ ,
同理, ,
如图,过点C作CG⊥AB于点G,
∵S菱形ABCD=ABCG= ACBD,
即10CG= ×12×16,
∴CG= .
∴S平行四边形APFD=DFCG= ,
∴S△EFD= EFQD=
∴ ,
②当S四边形APFE= S菱形ABCD
则 ,
即t2﹣20t+64=0,
解这个方程,得t1=4,t2=16>10(不合,舍去)
∴存在t=4s,使得S四边形APFE= S菱形ABCD.
【解析】解:(1)∵在菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm,
∴BO=DO=8cm,AO=CO=6cm,
∴AB= =10(cm),
所以答案是:10;
【考点精析】解答此题的关键在于理解因式分解法的相关知识,掌握已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势,以及对平行四边形的判定与性质的理解,了解若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积.