题目内容
【题目】如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式;
②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.
【答案】(1)抛物线的解析式为y=﹣x2+x+8;(2)①S=﹣m2+3m;②满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6﹣).
【解析】
(1)运用待定系数法求解;(2)①根据三角函数值性质得;②求函数的最值,根据抛物线性质求出D,Q的坐标,根据直角的位置有3种可能,展开分析,解直角三角形.
(1)将A、C两点坐标代入抛物线,得
,
解得:,
∴抛物线的解析式为y=
(2)①∵OA=8,OC=6,
∴AC=
过点Q作QE⊥BC与E点,则sin∠ACB=
②
∴当m=5时,S取最大值;
在抛物线对称轴l上存在点F,使△FDQ为直角三角形,
∵抛物线的解析式为y=的对称轴为x=,
D的坐标为(3,8),Q(3,4),
当∠FDQ=90°时,F1(,8),
当∠FQD=90°时,则F2(,4),
当∠DFQ=90°时,设F(,n),
则FD2+FQ2=DQ2,
即 +(8﹣n)2+ +(n﹣4)2=16,
解得:n=6±,
∴F3(,6+ ),F4(,6﹣),
满足条件的点F共有四个,坐标分别为
F1(,8),F2(,4),F3(,6+ ),F4(,6﹣).
【题目】小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:
次数 | 购买数量(件 | 购买总费用(元 | |
A | B | ||
第一次 | 2 | 1 | 55 |
第二次 | 1 | 3 | 65 |
根据以上信息解答下列问题:
(1)求A,B两种商品的单价;
(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.