题目内容
【题目】某商人将单价为8元的商品按每件10元出售,每天可销售100件,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销售价为偶数提高
A. 8元或10元 B. 12元 C. 8元 D. 10元
【答案】A
【解析】
每件利润为(x-8)元,销售量为(100-10×),根据利润=每件利润×销售量,得出销售利润y(元)与售单价x(元)之间的函数关系;再根据函数关系式,利用二次函数的性质求最大利润.
(1)依题意,得y=(x-8)(100-10×)=-5x2+190x-1200=-5(x-19)2+605,
-5<0,
∴抛物线开口向下,函数有最大值,
即当x=19时,y的最大值为605,
∵售价为偶数,
∴x为18或20,
当x=18时,y=600,
当x=20时,y=600,
∴x为18或20时y的值相同,
∴商品提高了18-10=8(元)或20-10=10(元)
故选A.
练习册系列答案
相关题目
【题目】为了了解学生的课外学习负担,即墨区某中学数学兴趣小组决定对本校学生每天的课外学习情况进行调查,他们随机抽取本校部分学生进行了问卷调查,并将调查结果分为A,B,C,D四个等级,列表如下:
等级 | A | B | C | D |
每天课外学习时间 |
根据调查结果绘制了如图所示的两幅不完整的统计图,请你根据图中信息解答下列问题:
本次抽样调查共抽取了多少名学生?其中学习时间在B等级的学生有多少人?
将条形统计图补充完整;
表示D等级的扇形圆心角的度数是多少?
该校共有2000名学生,每天课外学习时间在2小时以内的学生有多少人?