题目内容
【题目】如图,在平面直角坐标系中,直线AB与直线BC相交于点,直线AB与轴相交于点,直线BC与轴、轴分别相交于点、点C.
(1)求直线AB的解析式;
(2)过点A作BC的平行线交轴于点E,求点E的坐标;
(3)在(2)的条件下,点P是直线AB上一动点且在轴的上方,如果以点D、E、P、Q为顶点的平行四边形的面积等于△ABC,请求出点P的坐标,并直接写出点Q的坐标.
【答案】(1);(2)E(2,0);(3)P(-2,2),
【解析】
(1)利用待定系数法直接求函数的解析式,(2)先求BC的解析式,利用BC与过A的直线平行与待定系数法求解析式即可,(3)利用△ABC的面积求出点P的纵坐标,再求点P的横坐标,由平行四边形的性质与点的平移得到点Q的坐标.
解:(1)设直线AB过点A(0,4),,可设解析式
所以:,
解得:
所以:直线AB的解析式
(2)设直线BC的解析式为
因为B(-2,2),D(-1,0)
所以 可得
直线BC的解析式为
则过点A且平行于直线BC的解析式为
则E(2,0)
(3)因为:直线BC为:,所以:,
又因为:,
所以:,所以以D、E、P、Q为顶点的平行四边形的面积是6.
如图,由,
因为:,,所以:把代入AB的解析式:,
所以:,所以.
因为: ,
所以由平行四边形的性质与点的平移可得:
所以:P(-2,2),
练习册系列答案
相关题目