题目内容
【题目】如图,在平行四边形ABCD中,E、F分别是AB、BC的中点,CE⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G.
(1)证明:△CFG≌△AEG.
(2)若AB=4,求四边形AGCD的对角线GD的长.
【答案】(1)答案见解析;(2).
【解析】试题分析:(1)根据线段垂直平分线的性质得到AB=AC,AC=BC,得到AB=AC=BC,求得∠B=60°,于是得到∠BAF=∠BCE=30°,根据全等三角形的判定定理即可得到结论;
(2)根据菱形的判断对了得到ABCD是菱形,求得∠ADC=∠B=60°,AD=CD,求得∠ADG=30°,解直角三角形即可得到结论.
试题解析:(1)证明:∵E、F分别是AB、BC的中点,CE⊥AB,AF⊥BC,∴AB=AC,AC=BC,∴AB=AC=BC,∴∠B=60°,∴∠BAF=∠BCE=30°.∵E、F分别是AB、BC的中点,∴AE=CF.在△CFG≌△AEG中, ,∴△CFG≌△AEG;
(2)解:∵四边形ABCD是平行四边形,AB=BC,∴ABCD是菱形,∴∠ADC=∠B=60°,AD=CD.∵AD∥BC,CD∥AB,∴AF⊥AD,CE⊥CD.∵△CFG≌△AEG,∴AG=CG.∵GA⊥AD,GC⊥CD,GA=GC,∴GD平分∠ADC,∴∠ADG=30°.∵AD=AB=4,∴DG==.
【题目】中央电视台的《朗读者》节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数量少的有本,最多的有本,并根据调查结果绘制了不完整的图表,如下所示:
本数(本) | 频数(人数) | 频率 |
合计 |
()统计图表中的__________,__________,__________.
()请将频数分布直方图补充完整.
()求所有被调查学生课外阅读的平均本数.
()若该校八年级共有名学生,请你估计该校八年级学生课外阅读本及以上的人数.