题目内容
【题目】如图,在等边△ABC内有一点D,AD=4,BD=3,CD=5,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则四边形ADCE的面积为( )
A.12B.C.D.
【答案】C
【解析】
此题连接DE,先利用旋转和等边三角形的性质证明△ADE是等边三角形,根据题意,由△ADE是等边三角形依据勾股定理判定△CDE是直角三角形即可求四边形的面积.
如图:
连接DE,过点A作AN 垂直DE于点E,
根据题意由旋转知AD=AE,∠BAD=∠CAE,
又∵等边△ABC中,∠BAC=60°,
∴∠BAD+∠CAD=∠CAE+∠CAD,
即∠BAC=∠DAE=60°,
∴△ADE是等边三角形,
∴DE=AD=4,
又BD=3,CD=5,
∴ ,
∴△CDE是直角三角形,
∵AD=4,∠ADE=60°,
∴∠DAN=30°,
∴DN=2,
由勾股定理得AN= ,
∵=,
,
,
∴,
即四边形ADCE的面积是,
故答案为:C.
【题目】【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数表达式为y=2(x+)(x>0).
【探索研究】
小彬借鉴以前研究函数的经验,先探索函数y=x+的图象性质.
(1)结合问题情境,函数y=x+的自变量x的取值范围是x>0,下表是y与x的几组对应值.
x | … | 1 | 2 | 3 | m | … | |||
y | … | 4 | 3 | 2 | 2 | 2 | 3 | 4 | … |
①写出m的值;
②画出该函数图象,结合图象,得出当x= 时,y有最小值,y最小= ;
提示:在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.试用配方法求函数y=x+(x>0)的最小值,解决问题(2)
【解决问题】
(2)直接写出“问题情境”中问题的结论.