题目内容
【题目】如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF。
(1)求证:△EBF≌△DFC;
(2)求证:四边形AEFD是平行四边形;
(3)①△ABC满足_____________________时,四边形AEFD是菱形。(无需证明)
②△ABC满足_______________________时,四边形AEFD是矩形。(无需证明)
③△ABC满足_______________________时,四边形AEFD是正方形。(无需证明)
【答案】(1)证明见解析;
(2)证明见解析;
(3)①AB=AC②∠BAC=150°,③AB=AC,∠BAC=150°
【解析】试题分析:(1)由三角形BCF与三角形AEB为等边三角形,利用等边三角形的性质得到两对边相等,一对角相等,利用等式的性质得到夹角相等,利用SAS即可得证;
(2)可通过证△EFB≌△ACB,得EF=AC=AD;然后证△CDF≌△CAB,得DF=AB=AE;从而证得四边形ADFE的两组对边分别相等,即可得出ADFE是平行四边形;
(3)①当∠BAC=150°,由此可求得∠EAD的度数,则可得ADFE是矩形;
②当AE=AD时,ADFE是菱形;
③当ADFE是正方形时,∠EAD=90°,且AE=AD,联立(2)(3)的结论即可.
试题解析:(1)连接EF、DF,
∵△ABE、△CBF是等边三角形,
∴BE=AB,BF=CB,∠EBA=∠FBC=60°;
∴∠EBF=∠ABC=60°-∠ABF;
∴△EFB≌△ACB;
∴EF=AC=AD;
(2)同理由△CDF≌△CAB,得DF=AB=AE;
(3)①由AE=DF,AD=EF即可得出四边形AEFD是平行四边形;若∠BAC=150°,则平行四边形AEFD是矩形;
②由(2)知四边形AEFD是平行四边形,则∠EAD=90°时,可得平行四边形AEFD是矩形,∴∠BAC=360°-60°-60°-90°=150°,即△ABC满足∠BAC=150°时,四边形AEFD是矩形;
③综合①②的结论知:当△ABC是顶角∠BAC是150°的等腰三角形时,四边形AEFD是正方形.