题目内容
如图,四边形ABCD是菱形,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F,连接CE.
(1)求证:∠DAE=∠DCE;
(2)当AE=2EF时,判断FG与EF有何等量关系?并证明你的结论.
(1)求证:∠DAE=∠DCE;
(2)当AE=2EF时,判断FG与EF有何等量关系?并证明你的结论.
(1)证明:∵四边形ABCD是菱形,
∴AD=CD,∠ADE=∠CDB;
在△ADE和△CDE中,
∴△ADE≌△CDE,
∴∠DAE=∠DCE.
(2)判断FG=3EF.
∵四边形ABCD是菱形,
∴AD∥BC,
∴∠DAE=∠G,
由题意知:△ADE≌△CDE
∴∠DAE=∠DCE,
则∠DCE=∠G,
∵∠CEF=∠GEC,
∴△ECF∽△EGC,
∴
=
,
∵△ADE≌△CDE,
∴AE=CE,
∵AE=2EF,
∴
=
=
,
∴EG=2AE=4EF,
∴FG=EG-EF=4EF-EF=3EF.
∴AD=CD,∠ADE=∠CDB;
在△ADE和△CDE中,
|
∴△ADE≌△CDE,
∴∠DAE=∠DCE.
(2)判断FG=3EF.
∵四边形ABCD是菱形,
∴AD∥BC,
∴∠DAE=∠G,
由题意知:△ADE≌△CDE
∴∠DAE=∠DCE,
则∠DCE=∠G,
∵∠CEF=∠GEC,
∴△ECF∽△EGC,
∴
EF |
EC |
EC |
EG |
∵△ADE≌△CDE,
∴AE=CE,
∵AE=2EF,
∴
EF |
AE |
AE |
EG |
1 |
2 |
∴EG=2AE=4EF,
∴FG=EG-EF=4EF-EF=3EF.
练习册系列答案
相关题目