题目内容

【题目】如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,
(1)求证:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.

【答案】
(1)证明:∵BE平分∠BAC,AD平分∠ABC,

∴∠ABE=∠CBE,∠BAE=∠CAD,

∴∠DBC=∠CAD,

∴∠DBC=∠BAE,

∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,

∴∠DBE=∠DEB,

∴DE=DB


(2)解:连接CD,如图所示:

由(1)得:

∴CD=BD=4,

∵∠BAC=90°,

∴BC是直径,

∴∠BDC=90°,

∴BC= =4

∴△ABC外接圆的半径= ×4 =2


【解析】(1)由角平分线得出∠ABE=∠CBE,∠BAE=∠CAD,得出 ,由圆周角定理得出∠DBC=∠CAD,证出∠DBC=∠BAE,再由三角形的外角性质得出∠DBE=∠DEB,即可得出DE=DB;(2)由(1)得: ,得出CD=BD=4,由圆周角定理得出BC是直径,∠BDC=90°,由勾股定理求出BC= =4 ,即可得出△ABC外接圆的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网