题目内容
【题目】某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的长度.如图2,在某一时刻,光线与水平面的夹角为72°,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,若1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆AB的长度.(结果精确到0.1米.参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08).
【答案】解:如图,作CM∥AB交AD于点M,MN⊥AB于点N.
由题意 = ,即 = ,
∴CM=(米),
在Rt△AMN中,∵∠ANM=90°,MN=BC=4米,∠AMN=72°,
∴tan 72°= ,
∴AN=MNtan 72°≈4×3.08≈12.3(米).
∵MN∥BC,AB∥CM,
∴四边形MNBC是平行四边形,
∴BN=CM=米,
∴AB=AN+BN=13.8米.
【解析】如图作CM∥AB交AD于M,MN⊥AB于N,根据 = ,求出CM,在RT△AMN中利用tan72°= ,求出AN即可解决问题.
练习册系列答案
相关题目