题目内容
【题目】如图,在ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G.
(1)求证:AF=DF;
(2)若BC=2AB,DE=1,∠ABC=60°,求FG的长.
【答案】
(1)
证明:连接BD、AE,
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵DE=CD,
∴AB∥DE,AB=DE,
∴四边形ABDE是平行四边形,
∴AF=DF.
(2)
解:在BC上截取BN=AB=1,连接AN,
∵∠ABC=60°,
∴△ANB是等边三角形,
∴AN=1=BN,∠ANB=∠BAN=60°,
∵BC=2AB=2,
∴CN=1=AN,
∴∠ACN=∠CAN= ×60°=30°,
∴∠BAC=90°,
由勾股定理得:AC= = ,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴△AGB∽△CGE,
∴ ,
∴ = ,
AG= ,
在△BGA中,由勾股定理得:BG= = ,
∵ = ,
∴GE= ,
BE= + =2 ,
∵四边形ABDE是平行四边形,
∴BF= BE= ,
∴FG= ﹣ = .
【解析】(1)连接AE、BD、根据AB∥CD,AB=CD=DE,得出平行四边形ABDE,即可推出答案;(2)在BC上截取BN=AB=1,连接AN,推出△ANB是等边三角形,求出CN=1=AN,根据三角形的内角和定理求出∠BAC=90°,由勾股定理求出AC,根据△AGB∽△CGE,得出 ,求出AG,在△BGA中,由勾股定理求出BG,求出GE、BE,根据平行四边形BDEA求出BF,即可求出答案.
【考点精析】解答此题的关键在于理解三角形中位线定理的相关知识,掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三的一半,以及对平行四边形的性质的理解,了解平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.