题目内容

【题目】如图,已知△ABC,且∠ACB=90°.

(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明):
①以点A为圆心,BC边的长为半径作⊙A;
②以点B为顶点,在AB边的下方作∠ABD=∠BAC.
(2)请判断直线BD与⊙A的位置关系(不必证明).

【答案】
(1)

解:如图所示;


(2)

解:直线BD与⊙A相切.

∵∠ABD=∠BAC,

∴AC∥BD,

∵∠ACB=90°,⊙A的半径等于BC,

∴点A到直线BD的距离等于BC,

∴直线BD与⊙A相切.


【解析】(1)①以点A为圆心,以BC的长度为半径画圆即可;
②以点A为圆心,以任意长为半径画弧,与边AB、AC相交于两点E、F,再以点B为圆心,以同等长度为半径画弧,与AB相交于一点M,再以点M为圆心,以EF长度为半径画弧,与前弧相交于点N,作射线BN即可得到∠ABD;(2)根据内错角相等,两直线平行可得AC∥BD,再根据平行线间的距离相等可得点A到BD的距离等于BC的长度,然后根据直线与圆的位置关系判断直线BD与⊙A相切.
【考点精析】本题主要考查了直线与圆的三种位置关系的相关知识点,需要掌握直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网