题目内容

【题目】在平行四边形ABCD中,点EAD边上一点,连接CE,交对角线BD于点F,过点AAB的垂线交BD的延长线于点G,过BBH垂直于CE,垂足为点H,交CD于点P21+290°

1)若PH2BH4,求PC的长;

2)若BCFC,求证:GFPC

【答案】(1)2;(2)见解析.

【解析】

(1)根据四边形ABCD是平行四边形,先证∠BCP=∠BPC,再根据勾股定理即可求出答案;

(2)由(1)得:BC=BP=AD,可知四边形ABPD是等腰梯形,从而证∠1=∠GAD,然后证△DAG≌△FCD,作FM⊥CD于M,BN⊥CD于N,△CFM≌△BPN即可求出答案.

(1)解:∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC,AB∥CD,AB=CD,

∴∠BCH=∠2,

∴∠BCP=∠2+∠1,

∵2∠1+∠2=90°.

∴∠BCP=90°﹣∠1,

∵BH⊥CE,

∴∠BPC+∠1=90°,

∴∠BPC=90°﹣∠1,

∴∠BCP=∠BPC,

∴BC=BP=BH+PH=4+2=6,

∴CH2=BC2﹣BH2=62﹣42=20,

∴PC==2

(2)证明:由(1)得:BC=BP=AD,

∴四边形ABPD是等腰梯形,

∴∠DAB=∠PBA,

∵CD∥AB,

∴∠PBA=∠BPC,

∵BH⊥CE,

∴∠1=90°﹣∠BPC=90°﹣∠PBA=90°﹣∠DAB=∠GAD,

∵AD=BC,BC=FC,

∴AD=FC,∠CBF=∠CFB,

∵AD∥BC,

∴∠EDF=∠CBF,

∴∠EDF=∠CFB=∠EFD,

∴∠ADG=∠CFD,

在△DAG和△FCD中,

∴△DAG≌△FCD(ASA),

∴AG=CD=AB,DG=FD,

∵AG⊥AB,

∴△ABG是等腰直角三角形,

∴∠DBA=∠G=45°,

作FM⊥CD于M,BN⊥CD于N,如图所示:

∵AB∥CD,

∴∠CDF=∠DBA=45°,

∴△DMF是等腰直角三角形,

∴DM=FM,DF=FM,

∵BN⊥CD,BH⊥CE,

∴由三角形内角和定理得:∠1=∠PBN,

在△CFM和△BPN中,

∴△CFM≌△BPN(AAS),

∴FM=PN,

∵BC=BP,BN⊥CD,

∴PN=CN,

∴PC=2PN=2FM=DF,

PC=2DF,

∴GF=2DF=PC

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网