题目内容
【题目】如图,已致点的坐标为,点在轴的正半轴上,且.过点作,交轴于点;过点作,交轴于点;过点作,交轴于点;……;按此规律进行下去,则点的坐标为( )
A.B.C.D.
【答案】C
【解析】
通过解直角三角形可得出点A2的坐标,同理可得出点A3,A4,A5,A6,A7,…的坐标,根据坐标的变化可得出变化规律“点A4n+1的坐标为(0,32n)(n为正整数)”,再结合2021=505×4+1即可得出点A2021的坐标,此题得解.
∵∠A1A2O=30°,OA1=1,
∴OA2=,
∴点A2的坐标为(,0),
同理,A3(0,-3,),A4(-3,0),A5(0,9),A6(9,0),A7(0,-27),…,
∴点A4n+1的坐标为(0,32n)(n为正整数).
∵2021=505×4+1,
∴点A2021的坐标为(0,31010).
故选:C.
【题目】某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述数据
按如下分数段整理、描述这两组样本数据:
成绩 人数 部门 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)
分析数据
两组样本数据的平均数、中位数、众数如下表所示:
部门 | 平均数 | 中位数 | 众数 |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出结论:
.估计乙部门生产技能优秀的员工人数为____________;
.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)
【题目】某超市销售一种商品,成本价为50元/千克,规定每千克售价不低于成本价,且不高于85元.经过市场调查,该商品每天的销售量(千克)与售价(元/千克)满足一次函数关系,部分数据如下表:
售价(元/千克) | 50 | 60 | 70 |
销售量(千克) | 120 | 100 | 80 |
(1)求与之间的函数表达式.
(2)设该商品每天的总利润为(元),则当售价定为多少元/千克时,超市每天能获得最大利润?最大利润是多少元?
(3)如果超市要获得每天不低于1600元的利润,且符合超市自己的规定,那么该商品的售价的取值范围是多少?请说明理由.