题目内容

已知:点P是等边△ABC内任意一点,它到三边的距离分别为h1、h2、h3,且满足h1+h2+h3=6,则S△ABC=______.
如图,在等边△ABC中,AB=BC=AC,
过点A作AD⊥BC,垂足为D,
则BD=CD=
1
2
BC=
1
2
AB,
∵S△ABC=
1
2
AB•h1+
1
2
BC•h2+
1
2
AC•h3=
1
2
BC•AD,
∴AD=h1+h2+h3=6,
在Rt△ABD中,AB2=BD2+AD2
即AB2=(
1
2
AB)2+62
AB=4
3

∴S△ABC=
1
2
BC•AD=
1
2
×4
3
×6=12
3

故答案为:12
3

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网