题目内容
【题目】如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数(k≠0)的图象经过圆心P,则k=________________。
【答案】
【解析】分析:设⊙P与边AB,AO分别相切于点E、D,连接PE、PD、PA,用面积法可求出⊙P的半径,然后通过三角形相似可求出CD,从而得到点P的坐标,就可求出k的值.
详解:设⊙P与边AB,AO分别相切于点E、D,连接PE、PD、PA,如图所示.
则有PD⊥OA,PE⊥AB.
设⊙P的半径为r,
∵AB=5,AC=1,
∴S△APB= ABPE=r,S△APC=ACPD=r.
∵∠AOB=90°,OA=4,AB=5,
∴OB=3.
∴S△ABC=ACOB=×1×3=.
∵S△ABC=S△APB+S△APC,
∴=r+r.
∴r=.
∴PD=.
∵PD⊥OA,∠AOB=90°,
∴∠PDC=∠BOC=90°.
∴PD∥BO.
∴△PDC∽△BOC.
∴.
∴PDOC=CDBO.
∴×(4-1)=3CD.
∴CD=.
∴OD=OC-CD=3-=.
∴点P的坐标为(,).
∵反比例函数y=(k≠0)的图象经过圆心P,
∴k=×=.
故答案为:.
练习册系列答案
相关题目
【题目】某通信公司策划了两种上网的月收费方式:
收费方式 | 月使用费/元 | 包时上网时间/ | 超时费/(元/) |
30 | 25 | 0.05 | |
设每月上网时间为,方式的收费金额分别为(元),(元),如图是与之间函数关系的图象.(友情提示:若累计上网时间不超出包时上网时间,则只收月使用费;若累计上网时间超出包时上网时间,则对超出部分再加收超时费)
(1) , , ;
(2)求
(3)若每月上网时间为31小时,请直接写出选择哪种方式能节省上网费.