题目内容
【题目】如图,平行四边形ABCD的对角线AC,BD交于点O,△AOD是正三角形,AD=4,则平行四边形ABCD的面积为 .
【答案】16
【解析】解:作DE⊥AC于E, ∴∠AED=90°.
∵△AOD是正三角形,
∴AD=DO=AO,AO=EO= AO,∠ADO=∠DAO=60°,
∴∠ADE=30°.
∵AD=4,
∴AE=2.
在Rt△ADE中,由勾股定理,得
DE=2 ,
∴S△AOD= ×4×2 =4 .
∵四边形ABCD是平行四边,
∴S△AOD=S△DOC=S△BOC=S△AOB ,
∴平行四边形ABCD的面积=4×4 =16 .
所以答案是:16 .
【考点精析】关于本题考查的等边三角形的性质,需要了解等边三角形的三个角都相等并且每个角都是60°才能得出正确答案.
练习册系列答案
相关题目
【题目】为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:
港口 | 运费(元/吨) | |
甲库 | 乙库 | |
A港 | 14 | 20 |
B港 | 10 | 8 |
(1)设从甲仓库运送到A港口的物资为x吨,用含x的式子填写下表:
港口 | 运费(元/吨) | |
甲库 | 乙库 | |
A港 | x | |
B港 |
(2)求总费用y(元)与x(箱)之间的函数关系式,并写出x的取值范围;
(3)求出最低费用,并说明费用最低时的调配方案.