题目内容
【题目】如图,AB是⊙O的直径,C、G是⊙O上两点,且,过点C的直线CDBG于点D,交BA的延长线于点E,连接BC,交OD于点F.
(1)求证:CD是⊙O的切线.
(2)若,求E的度数.
(3)连接AD,在(2)的条件下,若CD=,求AD的长.
【答案】(1)证明见解析;(2)∠E=30°;(3)AD=.
【解析】
试题(1)如图1,连接OC,AC,CG,由圆周角定理得到∠ABC=∠CBG,根据同圆的半径相等得到OC=OB,于是得到∠OCB=∠OBC,等量代换得到∠OCB=∠CBG,根据平行线的判定得到OC∥BG,即可得到结论;(2)由OC∥BD,得到△OCF∽△BDF,△EOC∽△EBD,得到,,根据直角三角形的性质即可得到结论;(3)如图2,过A作AH⊥DE于H,解直角三角形得到BD=3,DE=3,BE=6,在Rt△DAH中,AD===.
试题解析:(1)证明:如图1,连接OC,AC,CG,
∵AC=CG,∴,∴∠ABC=∠CBG,
∵OC=OB,∴∠OCB=∠OBC,∴∠OCB=∠CBG,∴OC∥BG,
∵CD⊥BG,∴OC⊥CD,∴CD是⊙O的切线;
(2)解:∵OC∥BD,∴△OCF∽△BDF,△EOC∽△EBD,
∴,∴,
∵OA=OB,∴AE=OA=OB,∴OC=OE,
∵∠ECO=90°,∴∠E=30°;
(3)解:如图2,过A作AH⊥DE于H,
∵∠E=30°∴∠EBD=60°,∴∠CBD=EBD=30°,
∵CD=,∴BD=3,DE=3,BE=6,∴AE=BE=2,
∴AH=1,∴EH=,∴DH=2,
在Rt△DAH中,AD===.
故答案为(1)证明见解析;(2)∠E=30°;(3)AD=.
练习册系列答案
相关题目