题目内容

【题目】如图,AB切⊙O于点B,BC∥OA,交⊙O于点C,若∠OAB=30°,BC=6,则劣弧BC的长为

【答案】2π
【解析】解:连接OB,OC,

∵AB为圆O的切线,

∴∠ABO=90°,

在Rt△ABO中,∠OAB=30°,

∴∠AOB=60°,

∵BC∥OA,

∴∠OBC=∠AOB=60°,

又∵OB=OC,

∴△BOC为等边三角形,

∴∠BOC=60°,BO=CO=BC=6,

则劣弧BC长= =2π.

答案为:2π.

【考点精析】本题主要考查了切线的性质定理和弧长计算公式的相关知识点,需要掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径;若设⊙O半径为R,n°的圆心角所对的弧长为l,则l=nπr/180;注意:在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网