题目内容

【题目】如图,直线ABCD相交于点OOE是∠AOD的平分线,若∠AOC=60°,OFOE

(1)判断OF把∠AOC所分成的两个角的大小关系并证明你的结论;

(2)求∠BOE的度数.

【答案】(1)AOF=∠COF理由详见解析;(2)∠BOE=120°.

【解析】

(1)求出∠AOD度数,求出∠AOE,求出∠AOF,即可得出答案;
(2)求出∠BOD度数,求出∠DOE度数,相加即可得出答案.

(1)答:∠AOF=COF

证明:∵O是直线CD上一点,

∴∠AOC+AOD=180°,

∵∠AOC=60°,

∴∠AOD=180°﹣60°=120°,

OE平分∠AOD

OFOE

∴∠FOE=90°

∴∠AOFFOEAOE=90°﹣60°=30°,

∴∠COFAOCAOF=60°﹣30°=30°,

∴∠AOFCOF

(2)解:∵∠AOC=60°,

∴∠BODAOC=60°,AOD=180°﹣60°=120°,

OE是∠AOD的平分线,

∴∠DOEAOD=60°,

∴∠BOEBOD+DOE=60°+60°=120°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网