题目内容
【题目】已知关于x的方程x2﹣2(k+1)x+k2=0有两个实数根x1、x2.
(1)求k的取值范围;
(2)若x1+x2=3x1x2﹣6,求k的值.
【答案】(1)k≥﹣(2)k=2
【解析】试题分析:(1)、根据方程有两个实数根,从而得出△=,得出k的取值范围;(2)、根据韦达定理得出两根之和和两根之积,然后代入代数式求出k的值,然后根据k的取值范围得出答案.
试题解析:(1)∵方程x2﹣2(k+1)x+k2=0有两个实数根x1,x2,
∴△≥0,即4(k+1)2﹣4×1×k2≥0, 解得k≥﹣ , ∴k的取值范围为k≥﹣;
(2)∵方程x2﹣2(k+1)x+k2=0有两个实数根x1,x2,
∴x1+x2=2(k+1),x1x2=k2, ∵x1+x2=3x1x2﹣6,
∴2(k+1)=3k2﹣6,即3k2﹣2k﹣8=0, ∴k1=2,k2=﹣, ∵k≥﹣, ∴k=2.
练习册系列答案
相关题目