题目内容
【题目】如图,在平面直角坐标系中,已知抛物线C1:y=的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2:直线l:y=kx+b经过M,N两点.
(1)结合图象,直接写出不等式x2+6x+2<kx+b的解集;
(2)若抛物线C2的顶点与点M关于原点对称,求p的值及抛物线C2的解析式;
(3)若直线l沿y轴向下平移q个单位长度后,与(2)中的抛物线C2存在公共点,
求3﹣4q的最大值.
【答案】(1)﹣2<x<0(2)y=﹣x2+6x﹣2(3)当q=时,3﹣4q取最大值,最大值为﹣7
【解析】试题分析:(1)、首先根据二次函数的解析式分别求出点M和点N的坐标,然后根据图像得出不等式的取值范围;(2)、根据翻折得出抛物线的顶点坐标和开口方向以及大小,从而得出抛物线的函数解析式;(3)、首先将点M和点N的坐标代入一次函数解析式得出一次函数的解析式,然后设平移后的解析式为y=3x+2-q,然后根据与抛物线有交点得出方程有实数根,从而得出最大值.
试题解析:(1)令y=中x=0,则y=2,
∴N(0,2); ∵y==(x+2)2﹣4, ∴M(﹣2,﹣4).
观察函数图象,发现:当﹣2<x<0时,抛物线C1在直线l的下方,
∴不等式x2+6x+2<kx+b的解集为﹣2<x<0.
(2)∵抛物线C1:y=的顶点为M(﹣2,﹣4),
沿x轴翻折后的对称点坐标为(﹣2,4). ∵抛物线C2的顶点与点M关于原点对称,
∴抛物线C2的顶点坐标为(2,4), ∴p=2﹣(﹣2)=4.
∵抛物线C2与C1开口大小相同,开口方向相反,
∴抛物线C2的解析式为y=﹣(x﹣2)2+4=﹣x2+6x﹣2.
(3)将M(﹣2,﹣4)、N(0,2)代入y=kx+b中,得: ,解得: ,
∴直线l的解析式为y=3x+2.
∵若直线l沿y轴向下平移q个单位长度后与抛物线C2存在公共点,
∴方程﹣x2+6x﹣2=3x+2﹣q有实数根,即3x2﹣6x+8﹣2q有实数根,
∴△=(﹣6)2﹣4×3×(8﹣2q)≥0,解得:q≥. ∵﹣4<0,
∴当q=时,3﹣4q取最大值,最大值为﹣7.
【题目】中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 20 | 0.10 |
70≤x<80 | 30 | b |
80≤x<90 | a | 0.30 |
90≤x≤100 | 80 | 0.40 |
请根据所给信息,解答下列问题:
(1)a= , b=
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数会落在 分数段
(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?