题目内容

【题目】如图,在平面直角坐标系中,已知抛物线C1y=的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2:直线ly=kx+b经过MN两点.

(1)结合图象,直接写出不等式x2+6x+2<kx+b的解集;

(2)若抛物线C2的顶点与点M关于原点对称,求p的值及抛物线C2的解析式;

(3)若直线l沿y轴向下平移q个单位长度后,与(2)中的抛物线C2存在公共点,

求3﹣4q的最大值.

【答案】(1)﹣2<x<0(2)y=﹣x2+6x﹣2(3)当q=时,3﹣4q取最大值,最大值为﹣7

【解析】试题分析:(1)、首先根据二次函数的解析式分别求出点M和点N的坐标,然后根据图像得出不等式的取值范围;(2)、根据翻折得出抛物线的顶点坐标和开口方向以及大小,从而得出抛物线的函数解析式;(3)、首先将点M和点N的坐标代入一次函数解析式得出一次函数的解析式,然后设平移后的解析式为y=3x+2-q,然后根据与抛物线有交点得出方程有实数根,从而得出最大值.

试题解析:(1)令y=中x=0,则y=2,

∴N(0,2); ∵y==(x+2)2﹣4, ∴M(﹣2,﹣4).

观察函数图象,发现:当﹣2<x<0时,抛物线C1在直线l的下方,

∴不等式x2+6x+2<kx+b的解集为﹣2<x<0.

(2)∵抛物线C1:y=的顶点为M(﹣2,﹣4),

沿x轴翻折后的对称点坐标为(﹣2,4). ∵抛物线C2的顶点与点M关于原点对称,

∴抛物线C2的顶点坐标为(2,4), ∴p=2﹣(﹣2)=4.

∵抛物线C2与C1开口大小相同,开口方向相反,

∴抛物线C2的解析式为y=﹣(x﹣2)2+4=﹣x2+6x﹣2.

(3)将M(﹣2,﹣4)、N(0,2)代入y=kx+b中,得: ,解得:

∴直线l的解析式为y=3x+2.

∵若直线l沿y轴向下平移q个单位长度后与抛物线C2存在公共点,

∴方程﹣x2+6x﹣2=3x+2﹣q有实数根,即3x2﹣6x+8﹣2q有实数根,

∴△=(﹣6)2﹣4×3×(8﹣2q)≥0,解得:q≥. ∵﹣4<0,

∴当q=时,3﹣4q取最大值,最大值为﹣7.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网