题目内容
已知:如图,AB为⊙O的直径,AB⊥AC,BC交⊙O于D,E是AC的中点,ED与AB的延长线相交于点F.
(1)求证:DE为⊙O的切线.
(2)求证:AB:AC=BF:DF.
(1)求证:DE为⊙O的切线.
(2)求证:AB:AC=BF:DF.
证明:(1)连接DO、DA,
∵AB为⊙O直径,∴∠CDA=∠BDA=90°。
∵CE=EA,∴DE=EA。∴∠1=∠4。
∵OD=OA,∴∠2=∠3。
∵∠4+∠3=90°,∴∠1+∠2=90°,即:∠EDO=90°。
∴DE⊥OD。
∵OD是半径,∴DE为⊙O的切线。
(2)∵∠3+∠DBA=90°,∠3+∠4=90°,
∴∠4=∠DBA。
∵∠CDA=∠BDA=90°,∴△ABD∽△CAD。
∴。
∵∠FDB+∠BDO=90°,∠DBO+∠3=90°,
又∵OD=OB,∴∠BDO=∠DBO。∴∠3=∠FDB。
∵∠F=∠F,∴△FAD∽△FDB。∴。
∴,即AB:AC=BF:DF。
∵AB为⊙O直径,∴∠CDA=∠BDA=90°。
∵CE=EA,∴DE=EA。∴∠1=∠4。
∵OD=OA,∴∠2=∠3。
∵∠4+∠3=90°,∴∠1+∠2=90°,即:∠EDO=90°。
∴DE⊥OD。
∵OD是半径,∴DE为⊙O的切线。
(2)∵∠3+∠DBA=90°,∠3+∠4=90°,
∴∠4=∠DBA。
∵∠CDA=∠BDA=90°,∴△ABD∽△CAD。
∴。
∵∠FDB+∠BDO=90°,∠DBO+∠3=90°,
又∵OD=OB,∴∠BDO=∠DBO。∴∠3=∠FDB。
∵∠F=∠F,∴△FAD∽△FDB。∴。
∴,即AB:AC=BF:DF。
试题分析:(1)连接OD、AD,求出CDA=∠BDA=90°,求出∠1=∠4,∠2=∠3,推出∠4+∠3=∠1+∠2=90°,根据切线的判定推出即可;
(2)证△ABD∽△CAD,刘,证△FAD∽△FDB,得,即可得出AB:AC=BF:DF。
练习册系列答案
相关题目