题目内容
【题目】阅读理解:
在解形如3|x-2|=|x-2|+4这一类含有绝对值的方程时,我们可以根据绝对值的意义分x<2和x≥2两种情况讨论:
①当x<2时,原方程可化为-3(x-2)=-(x-2)+4,解得:x=0,符合x<2
②当x≥2时,原方程可化为3(x-2)=(x-2)+4,解得:x=4,符合x≥2
∴原方程的解为:x=0,x=4.
解题回顾:本题中2为x-2的零点,它把数轴上的点所对应的数分成了x<2和x≥2两部分,所以分x<2和x≥2两种情况讨论.
知识迁移:
(1)运用整体思想先求|x-3|的值,再去绝对值符号的方法解方程:|x-3|+8=3|x-3|;
知识应用:
(2)运用分类讨论先去绝对值符号的方法解类似的方程:|2-x|-3|x+1|=x-9.
(提示:本题中有两个零点,它们把数轴上的点所对应的数分成了几部分呢?)
【答案】(1);(2)=-14或=.
【解析】
(1)先把|x-3|-3|x-3|=-8看作是关于|x-3|的一元一次方程,可解得|x-3|=4,再去绝对值得到x-3=±4,然后解两个一元一次方程即可;
(2)2-x的零点为2,x+1的零点为-1,这样分三个区间进行讨论:当x≤-1;当-1<x≤2;当-1<x≤2;在各区间分别去绝对值化为一元一次方程,解方程,然后得到满足条件的x的值.
解:(1)移项得|x-3|-3|x-3|=-8,
合并得-2|x-3|=-8,
两边除以-2得|x-3|=4,
所以x-3=±4,
∴x=-1或7;
(2)当x≤-1,原方程可化为2-x+3(x+1)=x-9,解得x=-14,符合x≤-1;
当-1<x≤2,原方程可化为2-x-3(x+1)=x-9,解得x=,符合-1<x≤2;
当x>2,原方程可化为-2+x+3(x+1)=x-9,解得x=,不符合x>2;
∴原方程的解为x=-14或x=.