题目内容
【题目】请阅读下列材料,并完成相应的任务.
梅涅劳斯(Menelaus)是公元一世纪时的希腊数学家兼天文学家,著有几何学和三角学方面的许多书籍.梅涅劳斯发现,三角形各边(或其延长线)被一条不过任何一个顶点也不与任何一条边平行的直线所截,这条直线可能与三角形的两条边相交(一定还会与一条边的延长线相交),也可能与三条边都不相交(与三条边的延长线都相交).他进行了深入研究并证明了著名的梅涅劳斯定理(简称梅氏定理):
设D,E,F依次是△ABC的三边AB,BC,CA或其延长线上的点,且这三点共线,则满足.
这个定理的证明步骤如下:
情况①:如图1,直线DE交△ABC的边AB于点D,交边AC于点F,交边BC的延长线与点E.
过点C作CM∥DE交AB于点M,则,(依据),
∴=,
∴BEADFC=BDAFEC,即.
情况②:如图2,直线DE分别交△ABC的边BA,BC,CA的延长线于点D,E,F.
…
(1)情况①中的依据指: ;
(2)请你根据情况①的证明思路完成情况②的证明;
(3)如图3,D,F分别是△ABC的边AB,AC上的点,且AD:DB=CF:FA=2:3,连接DF并延长,交BC的延长线于点E,那么BE:CE= .
【答案】(1)两条直线被一组平行线所截,所得的对应线段成比例;(2)见解析;(3)
【解析】
(1)根据平行线分线段成比例定理解决问题即可;
(2)如图2中,作CN∥DE交BD于N.模仿情况①的方法解决问题即可;
(3)利用梅氏定理即可解决问题.
解:(1)情况①中的依据是:两条直线被一组平行线所截,所得的对应线段成比例.
故答案为:两条直线被一组平行线所截,所得的对应线段成比例.
(2)如图2中,作CN∥DE交BD于N.
则有=,=,
∴=,
∴BEADFC=BDAFEC,
∴=1.
(3)∵=1,AD:DB=CF:FA=2:3,
∴=1,∴=.
故答案为:.
【题目】某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以13元/千克的价格销售,那么每天可获取利润750元.
【利润=(销售价-进价)销售量】
(1)请根据他们的对话填写下表:
销售单价x(元/kg) | 10 | 11 | 13 |
销售量y(kg) |
(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?