题目内容
【题目】如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.
(1)求证:D是BC的中点.
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.
【答案】
(1)证明:∵AF∥BC,
∴∠AFE=∠DCE
∵E是AD的中点,
∴AE=DE.
∵∠AEF=∠DEC,
∴△AEF≌△DEC.
∴AF=DC,
∵AF=BD
∴BD=CD,
∴D是BC的中点
(2)四边形AFBD是矩形,
证明:∵AB=AC,D是BC的中点,
∴AD⊥BC,
∴∠ADB=90°,
∵AF=BD,AF∥BC,
∴四边形AFBD是平行四边形,
∴四边形AFBD是矩形
【解析】(1)因为AF∥BC,E为AD的中点,即可根据AAS证明△AEF≌△DEC,故有BD=DC;(2)可根据有一个角是直角的平行四边形是矩形进行判定.
【考点精析】解答此题的关键在于理解矩形的判定方法的相关知识,掌握有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形.
练习册系列答案
相关题目