题目内容

【题目】如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.
(1)求证:D是BC的中点.
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.

【答案】
(1)证明:∵AF∥BC,

∴∠AFE=∠DCE

∵E是AD的中点,

∴AE=DE.

∵∠AEF=∠DEC,

∴△AEF≌△DEC.

∴AF=DC,

∵AF=BD

∴BD=CD,

∴D是BC的中点


(2)四边形AFBD是矩形,

证明:∵AB=AC,D是BC的中点,

∴AD⊥BC,

∴∠ADB=90°,

∵AF=BD,AF∥BC,

∴四边形AFBD是平行四边形,

∴四边形AFBD是矩形


【解析】(1)因为AF∥BC,E为AD的中点,即可根据AAS证明△AEF≌△DEC,故有BD=DC;(2)可根据有一个角是直角的平行四边形是矩形进行判定.
【考点精析】解答此题的关键在于理解矩形的判定方法的相关知识,掌握有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网