题目内容
【题目】如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连结CD和EF.
(1)求证:四边形CDEF是平行四边形;
(2)求四边形BDEF的周长.
【答案】(1)证明见解析;(2)四边形BDEF的周长为5+
【解析】
试题分析:(1)直接利用三角形中位线定理得出DE∥BC,再利用平行四边形的判定方法得出答案;
(2)分别计算BD、DE、EF、BF的长,再求四边形BDEF的周长即可.
试题解析: (1)∵D、E分别是AB,AC中点
∴DE∥BC,DE=BC
∵CF=BC
∴DE=CF
∴四边形CDEF是平行四边形
(2) ∵四边形DEFC是平行四边形,
∴DC=EF,
∵D为AB的中点,等边△ABC的边长是2,
∴AD=BD=1,CD⊥AB,BC=2,
∴DC=EF=.
∴四边形BDEF的周长为5+
练习册系列答案
相关题目