题目内容

【题目】如图1,在直角坐标系中,一次函数的图象轴交于点,与一次函数的图象交于点.

1)求的值及的表达式;

2)直线轴交于点,直线y轴交于点,求四边形的面积;

3)如图2,已知矩形,矩形的边轴上平移,若矩形与直线有交点,直接写出的取值范围,

【答案】1;(2 ;(3.

【解析】

1)由点在一次函数图象上可求出E点坐标,然后将AE两点坐标代入解析式即可求出l1的表达式;

2)由于,求出BC坐标即可解答

3)分别求出矩形MNPQ与直线l1l2有交点边界时的极限值可解答

1在一次函数图象上,

设直线的表达式为

直线过点

解得.

直线的表达式为.

2)由(1)可知:点坐标为点坐标为

.

3.

Q在直线上时,a=,此时矩形MNPQ与直线有交点a取最小值,

N在直线上时,N点坐标=a=,此时矩形MNPQ与直线有交点a取最大值,

Q在直线上时,a=2,此时矩形MNPQ与直线有交点a取最小值,

N在直线上时,N点坐标=4a=6,此时矩形MNPQ与直线有交点a取最大值,

故当时,矩形MNPQ与直线有交点,当2a≤6时,矩形MNPQ与直线有交点,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网