题目内容
【题目】如图,等腰中,,于.的平分线分别交,于点,两点,为的中点,延长交于点,连接.下列结论:①;②;③是等腰三角形;④.其中正确的结论个数是( )
A.1个B.2个C.3个D.4个
【答案】D
【解析】
求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,即可判断①,证△ABF≌△CAN,推出CN=AF=AE,即可判断②;根据A、B、D、M四点共圆求出∠ADM=22.5°,即可判断④,根据三角形外角性质求出∠DNM,求出∠MDN=∠DNM,即可判断③.
∵∠BAC=90°,AC=AB,AD⊥BC,
∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,
∴∠BAD=45°=∠CAD,
∵BE平分∠ABC,
∴∠ABE=∠CBE=∠ABC=22.5°,
∴∠BFD=∠AEB=90°-22.5°=67.5°,
∴∠AFE=∠BFD=∠AEB=67.5°,
∴AF=AE,
∵M为EF的中点,
∴AM⊥BE,
∴∠AMF=∠AME=90°,
∴∠DAN=90°-67.5°=22.5°=∠MBN,
在△FBD和△NAD中
∴△FBD≌△NAD,
∴DF=DN,∴①正确;
在△AFB和△△CNA中
∴△AFB≌△CAN,
∴AF=CN,
∵AF=AE,
∴AE=CN,∴②正确;
∴A、B、D、M四点共圆,
∴∠ABM=∠ADM=22.5°,
∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴④正确;
∵∠DNA=∠C+∠CAN=45°+22.5°=67.5°,
∴∠MDN=180°-45°-67.5°=67.5°=∠DNM,
∴DM=MN,∴△DMN是等腰三角形,∴③正确;
即正确的有4个,
故选:D.
练习册系列答案
相关题目