题目内容
【题目】如图是二次函数(a、b、c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①当时,;②;③;④3a+c>0,其中正确的是( )
A. ①③B. ①④C. ②③D. ②④
【答案】C
【解析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=-1时,y=a-b+c;然后由图象确定当x取何值时,y>0.
①如图,当-1<x<3时,y不只是大于0.
故错误.
②∵对称轴在y轴右侧,
∴a、b异号,
∴ab<0,故正确;
③∵对称轴x=-=1,
∴2a+b=0;故正确;
④∵2a+b=0,
∴b=-2a,
∵当x=-1时,y=a-b+c<0,
∴a-(-2a)+c=3a+c<0,故错误;
故选:A.
练习册系列答案
相关题目