题目内容
【题目】数学实验室:
点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.
利用数形结合思想回答下列问题:
①数轴上表示2和5两点之间的距离是 ,数轴上表示1和﹣3的两点之间的距离是 .
②数轴上表示x和﹣2的两点之间的距离表示为 .数轴上表示x和5的两点之间的距离表示为 .
③若x表示一个有理数,则|x﹣1|+|x+3|的最小值= .
④若x表示一个有理数,且|x+3|+|x﹣2|=5,则满足条件的所有整数x的是 .
⑤若x表示一个有理数,当x为 ,式子|x+2|+|x﹣3|+|x﹣5|有最小值为 .
【答案】①3,4;
②|x+2|,|5﹣x|;
③4;
④﹣3或2;
⑤3,7.
【解析】
试题分析:①②在数轴上A、B两点之间的距离AB=|a﹣b|,依此即可求解;
④根据绝对值的性质去掉绝对值号,然后计算即可得解;
③首先将原式变形为y=|x﹣1|+|x+3|,然后分别从当x≥1时,当﹣3≤x<1时,当x<﹣3时去分析,根据一次函数的增减性,即可求得y的最小值;
④当x<﹣3时,当﹣3≤x≤2时,当x>2时去分析,根据一次函数的增减性,即可求得答案;
⑤当x≥5时,当3≤x<5时,当﹣2≤x<3时,当x<﹣2时去分析,根据一次函数的增减性,即可求得y的最小值.
解:①数轴上表示2和5两点之间的距离是5﹣2=3,数轴上表示1和﹣3的两点之间的距离是1﹣(﹣3)=4,
故答案为:3,4;
②数轴上表示x和﹣2的两点之间的距离表示为|x﹣(﹣2)|=|x+2|,数轴上表示x和5的两点之间的距离表示为|5﹣x|,
故答案为:|x+2|,|5﹣x|;
③当x<﹣3时,|x﹣1|+|x+3|=1﹣x﹣x﹣3=﹣2x﹣2,
当﹣3≤x≤1时,|x﹣1|+|x+3|=1﹣x+x+3=4,
当x>1时,|x﹣1|+|x+3|=x﹣1+x+3=2x+2,
在数轴上|x﹣1|+|x+3|的几何意义是:表示有理数x的点到﹣3及到1的距离之和,所以当﹣3≤x≤1时,它的最小值为4,
故答案为:4;
④当x<﹣3时,|x+3|+|x﹣2|=﹣x﹣3+2﹣x=﹣2x﹣1=5,
解得:x=﹣3,
此时不符合x<﹣3,舍去;
当﹣3≤x≤2时,|x+3|+|x﹣2|=x+3+2﹣x=5,
此时x=﹣3或x=2;
当x>2时,|x+3|+|x﹣2|=x+3+x﹣2=2x+1=5,
解得:x=2,
此时不符合x>2,舍去;
故答案为:﹣3或2;
⑤∵设y=|x+2|+|x﹣3|+|x﹣5|,
i、当x≥5时,y=x+2+x﹣3+x﹣5=3x﹣6,
∴当x=5时,y最小为:3x﹣6=3×5﹣6=9;
ii、当3≤x<5时,y=x+2+x﹣3+5﹣x=x+4,
∴当x=3时,y最小为7;
iii、当﹣2≤x<3时,y=x+2+3﹣x+5﹣x=10﹣x,
∴此时y最小接近7;
iiii、当x<﹣2时,y=﹣x﹣2+3﹣x+5﹣x=6﹣x,
∴此时y最小接近8;
∴y的最小值为7.
故答案为:3,7.