题目内容

【题目】如图,⊙O是△ABC的外接圆,∠A=60°,过点C作⊙O的切线,交射线BO于点E.

(1)求∠BCE的度数;
(2)若⊙O半径为3,求BE长.

【答案】
(1)解:连接OC,∵∠A=60°,∴∠BOC=120°,

又∵OB=OC,∴∠OCB=∠OBC=30°,

∵EC切⊙O于E,∴∠OCE=90°,

∴∠ECB=120°


(2)解:过点O作OD⊥BC于点D,

∵∠A=60°,

∴∠BOC=120°,

又∵∠CBE=∠BOC,

∴△BOC∽△BCE,

=

∴BC2=BOBE;

∵BO=3,∠OBD=30°,

∴BD=BOcos30°=

∴BC=3

∴(3 2=3BE,

∴BE=9.


【解析】(1)利用切线的性质结合等腰三角形的性质得出∠OCE=90°,∠OCB=∠OBC=30°,进而求出∠BCE的度数;(2)利用相似三角形的判定与性质得出△BOC∽△BCE,进而得出 = ,进而得出答案.
【考点精析】通过灵活运用切线的性质定理,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网