题目内容

如图,在等腰梯形ABCD中,ADBC,BC=10,AD=2,∠B=45°.直角三角板含45°角的顶点E在边BC上移动,一直角边始终经过点A,斜边与CD交于点F.若△ABE为等腰三角形,则CF的长等于______.
过D作DH⊥BC于H,
有三种情况:

如图所示:①当AE=BE时,
∵四边形ABCD是等腰梯形,
∴BE=CH=
1
2
(BC-AD)=4,
由勾股定理得:AB=4
2

∴CE=BC-BE=6,
∵∠B=∠BAE=45°,
∴∠AEB=90°,
∴∠FEC=180°-90°-45°=45°=∠C,
∴∠EFC=180°-45°-45°=90°,
∴由勾股定理得:CF=EF=3
2

②当AB=AE=4
2
时,
由勾股定理求得:BE=8,
∴CE=BC-BE=2,
同法可求出∠FEC=90°,∠EFC=45°=∠C,
由勾股定理得:CF=
EF2+CE2
=2
2



如图当AB=BE=4
2
时,
∠AEB=∠BAE=
1
2
(180°-∠B)=67.5°,
∴∠FEC=180°-67.5°-45°=67.5°,
∵∠C=45°,
∴∠CFE=180°-∠C-∠FEC=67.5°=∠FEC,
∴CF=CE=BC-BE=10-4
2

故答案为:3
2
或2
2
或10-4
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网