题目内容
【题目】填空,完成下列说理过程
如图,已知点A,O,B在同一条直线上,OE平分∠BOC,∠DOE=90°
求证:OD是∠AOC的平分线;
证明:如图,因为OE是∠BOC的平分线,
所以∠BOE=∠COE.( )
因为∠DOE=90°
所以∠DOC+∠ =90°
且∠DOA+∠BOE=180°﹣∠DOE= °.
所以∠DOC+∠ =∠DOA+∠BOE.
所以∠ =∠ .
所以OD是∠AOC的平分线.
【答案】角平分线定义;COE;90;COE;DOC;DOA.
【解析】
根据已知条件和观察图形,利用角平分线的性质即可证明.
证明:如图,因为OE是∠BOC的平分线,
所以∠BOE=∠COE(角平分线定义)
因为∠DOE=90°,
所以∠DOC+∠COE=90°,
且∠DOA+∠BOE=180°﹣∠DOE=90°.
所以∠DOC+∠COE=∠DOA+∠BOE.
所以∠DOC=∠DOA.
所以OD是∠AOC的平分线.
故答案为:角平分线定义;COE;90;COE;DOC;DOA.
练习册系列答案
相关题目