题目内容

【题目】我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1,若我们规定一个新数i,使其满足i2=﹣1(即x2=﹣1方程有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2i=(﹣1)i,i4=(i22=(﹣1)2=1,从而对任意正整数n,我们可得到i4n+1=i4ni=(i4ni,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么,i+i2+i3+i4+…+i2016+i2017的值为

A. 0 B. 1 C. ﹣1 D. i

【答案】D

【解析】试题解析:由题意得,i1=ii2=-1i3=i2i=-1i=-ii4=i22=-12=1i5=i4i=ii6=i5i=-1

故可发现4次一循环,一个循环内的和为0

=504…1

i+i2+i3+i4+…+i2013+i2017=i

故选D

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网