题目内容
(本题12分) 在正方形网格中,A、B为格点,以点为圆心,为半径作圆交网格线于点(如图(1)),过点作圆的切线交网格线于点,以点为圆心,为半径作圆交网格线于点(如图(2)).问题:
【小题1】(1) 求的度数;
【小题2】(2) 求证:;
【小题3】(3) 可以看作是由经过怎样的变换得到的?并判断的形状(不用说明理由).
【小题4】(4) 如图(3),已知直线,且a∥b,b∥c,在图中用直尺、三角板、圆规画等边三角形,使三个顶点,分别在直线上.要求写出简要的画图过程,不需要说明理由.
【小题1】(1)=60°
【小题2】略
【小题3】(3)是由绕点A顺时针旋转60°得到的. 是等边三角形.
【小题4】(4)①在直线a上任取一点,记为点A′,作A′M′⊥b,垂足为点M′;②作线段A′M′的垂直平分线,此直线记为直线d;③以点A′为圆心,A′M′长为半径画圆,与直线d交于点N′;④过点N′作N′C′⊥A′N′交直线c于点C′;⑤以点A′为圆心,A ′C′ 长为半径画圆,此圆交直线b于点B′;
连接A′B′、B′C′,则△A′B′C′为所求等边三角形解析:
略
练习册系列答案
相关题目
(本题12分)
某商品的进价为每千克40元,销售单价与月销售量的关系如下表(每千克售价不能高于65元):
销售单价(元) | 50 | 53 | 56 | 59 | 62 | 65 |
月销售量(千克) | 420 | 360 | 300 | 240 | 180 | 120 |
该商品以每千克50元为售价,在此基础上设每千克的售价上涨元(为正整数),每个月的销售利润为元.
(1)求与的函数关系式,并直接写出自变量的取值范围;
(2)每千克商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?