题目内容

【题目】如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,∠3=105°,求∠ACB的度数.

【答案】解:∵CD⊥AB,EF⊥AB, ∴CD∥EF,
∴∠2=∠BCD,又∠1=∠2,
∴∠1=∠BCD,
∴DG∥BC,
∴∠ACB=∠3=105°
【解析】证明CD∥EF,得到∠2=∠BCD,证明DG∥BC,根据平行线的性质证明即可.
【考点精析】通过灵活运用平行线的判定与性质和三角形的内角和外角,掌握由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质;三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网