题目内容
【题目】已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=.
(1)求点A的坐标;
(2)点E在y轴负半轴上,直线EC交线段AB于点C,交x轴于点D.若C点坐标为(-6.m),求:直线AB的表达式和经过点C得反比例函数表达式.
【答案】(1)A(﹣8,0);(2) y=x+4,.
【解析】
(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;
(2)求出直线AB的解析式,构建方程组求出点C坐标即可求出反比例函数解析式;
解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解, ∴OB=4,
在Rt△AOB中,tan∠BAO==, ∴OA=8, ∴A(﹣8,0).
(2)解:设直线AB的表达式为:y=kx+b
把点A(﹣8,0)和B(0,,4)代入上式中
得直线AB的解析式为y=x+4,
把点D(-6.m)代入上式中,得m=1,∴C(﹣6,1)
设:反比例函数的表达式为y=
把C(﹣6,1)代入上式中,得n=﹣6
∴反比例函数的表达式为y=﹣.
【题目】某校开展“传统文化”知识竞赛,已知该校七年级男生和女生各有学生200人,从中各随机抽取20名学生进行抽样调查,获得了他们知识竞赛成绩(满分100分),并进行整理,得到下面部分信息.
男生:74 97 96 89 98 74 65 76 72 78 99 72 97 76 99 74 99 73 98 74
女生:76 87 93 65 78 94 89 68 95 54 89 87 89 89 77 94 86 87 92 91
成绩 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
男生 | 0 | 1 | 10 | 1 | 8 |
女生 | 1 | 2 | a | 8 | 6 |
平均数、中位数、众数、方差如表所示:
成绩 | 平均数 | 中位数 | 众数 | 方差 |
男生 | 84 | 77 | 74 | 145.4 |
女生 | 84 | b | 89 | 115.6 |
根据以上信息,回答下列问题:
(1)a= ,b= ;
(2)你认为七年级学生中,男生还是女生的总体成绩较好,为什么?(至少从两个不同的角度说明)
(3)若在此次竞赛中,该校七年级学生中有四人取得100分的好成绩,且恰好是两个男生两个女生.现从这四人中随机抽取两人参加市里的竞赛,求这两人恰好是一男一女的概率.
【题目】中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
请根据所给信息,解答下列问题:
(1)m= ,n= ;
(2)请补全频数分布直方图;
(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?