题目内容
【题目】如图所示,在中,与的平分线交于点,过点作交于点,交于点,那么下列结论:①;②;③和都是等腰三角形;④的周长等于与的和,其中正确的有( )
A.4个B.3个C.2个D.1个
【答案】B
【解析】
通过平行线和角平分线得到相等的角,再根据平行线的性质及等腰三角形的判定和性质解答即可.
解:∵∠ABC、∠ACB的平分线相交于点P,
∴∠MBP=∠PBC,∠PCN=∠PCB,
又∵MN∥BC,
∴∠PBC=∠MPB,∠NPC=∠PCB,
∴∠MBP=∠MPB,∠NPC=∠PCN,
∴BM=MP,PN=CN,
∴MN=MP+PN=BM+CN,故②正确,
△BMP和△CNP都是等腰三角形,故③正确,
∵△AMN的周长=AM+AN+MN,MN=BM+CN,
∴△AMN的周长等于AB与AC的和,故④正确,
不能说明,故①错误;
故答案为B.
练习册系列答案
相关题目
【题目】省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(1)根据表格中的数据,计算出甲的平均成绩是 环,乙的平均成绩是 环;
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
计算方差的公式:s2= [(x1-)2+(x2-)2++(xn-)2]