题目内容
【题目】如图,在等边中取点使得,,的长分别为3, 4, 5,则_________.
【答案】
【解析】
把线段AP以点A为旋转中心顺时针旋转60得到线段AD,由旋转的性质、等边三角形的性质以及全等三角形的判定定理SAS证得△ADB≌△APC,连接PD,根据旋转的性质知△APD是等边三角形,利用勾股定理的逆定理可得△PBD为直角三角形,∠BPD=90,由△ADB≌△APC得S△ADB=S△APC,则有S△APC+S△APB=S△ADB+S△APB=S△ADP+S△BPD,根据等边三角形的面积为边长平方的倍和直角三角形的面积公式即可得到S△ADP+S△BPD=×32+×3×4=.
将线段AP以点A为旋转中心顺时针旋转60得到线段AD,连接PD
∴AD=AP,∠DAP=60,
又∵△ABC为等边三角形,
∴∠BAC=60,AB=AC,
∴∠DAB+∠BAP=∠PAC+∠BAP,
∴∠DAB=∠PAC,
又AB=AC,AD=AP
∴△ADB≌△APC
∵DA=PA,∠DAP=60,
∴△ADP为等边三角形,
在△PBD中,PB=4,PD=3,BD=PC=5,
∵32+42=52,即PD2+PB2=BD2,
∴△PBD为直角三角形,∠BPD=90,
∵△ADB≌△APC,
∴S△ADB=S△APC,
∴S△APC+S△APB=S△ADB+S△APB=S△ADP+S△BPD=×32+×3×4=.
故答案为:.
练习册系列答案
相关题目