题目内容
【题目】如图,四边形ABCD中,∠A=90°,AD∥BC,BE⊥CD于E交AD的延长线于F,DC=2AD,AB=BE.
(1)求证:AD=DE.
(2)求证:四边形BCFD是菱形.
【答案】(1)证明见解析,(2)证明见解析.
【解析】
(1)由 ,利用“HL”可证△BDA≌△BDE,得出AD=DE;
(2)由AD=DE,DC=DE+EC=2AD,可得DE=EC,又AD∥BC,可证△DEF≌△CEB,得出四边形BCFD为平行四边形,再由BE⊥CD证明四边形BCFD是菱形.
证明:(1)∵∠A=∠DEB=90°,
在Rt△BDA与Rt△BDE中,
,
∴△BDA≌△BDE,
∴AD=DE;
(2)∵AD=DE,DC=DE+EC=2AD,
∴DE=EC,
又∵AD∥BC,
∴△DEF≌△CEB,
∴DF=BC,
∴四边形BCFD为平行四边形,
又∵BE⊥CD,
∴四边形BCFD是菱形.
练习册系列答案
相关题目