题目内容
【题目】如图,AB是⊙O的弦,半径OE⊥AB,P为AB的延长线上一点,PC与⊙O相切于点C,CE与AB交于点F.
(1)求证:PC=PF;
(2)连接OB,BC,若OB∥PC,BC=3,tanP=,求FB的长.
【答案】(1)证明见解析;(2)FB=2.
【解析】
(1)连接OC,根据切线的性质以及OE⊥AB,可知∠E+∠EFA=∠OCE+∠FCP=90°,从而可得∠EFA=∠FCP,继而可推得∠CFP=∠FCP,再根据等角对等边即可证得;
(2)过点B作BG⊥PC于点G,由OB∥PC,OB=OC,BC=3,从而求得OB=3,继而证得四边形OBGC是正方形,从而有OB=CG=BG=3,从而有,求得PG=4,再利用勾股定理可求得PB长,继而可求出FB长.
(1)连接OC,
∵PC是⊙O的切线,
∴∠OCP=90°,
∵OE=OC,
∴∠E=∠OCE,
∵OE⊥AB,
∴∠E+∠EFA=∠OCE+∠FCP=90°,
∴∠EFA=∠FCP,
∵∠EFA=∠CFP,
∴∠CFP=∠FCP,
∴PC=PF;
(2)过点B作BG⊥PC于点G,
∵OB∥PC,
∴∠COB=90°,
∵OB=OC,BC=3,
∴OB=3,
∵BG⊥PC,
∴四边形OBGC是正方形,
∴OB=CG=BG=3,
∵tanP=,
∴,
∴PG=4,
∴由勾股定理可知:PB=5,
∵PF=PC=7,
∴FB=PF﹣PB=7﹣5=2.
【题目】一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
售价x(元/千克) | … | 50 | 60 | 70 | 80 | … |
销售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?