题目内容
【题目】已知抛物线y=x2+(1﹣2a)x﹣2a(a是常数).
(1)证明:该抛物线与x轴总有交点;
(2)设该抛物线与x轴的一个交点为A(m,0),若2<m≤5,求a的取值范围;
(3)在(2)的条件下,若a为整数,将抛物线在x轴下方的部分沿x轴向上翻折,其余部分保持不变,得到一个新图象G,请你结合新图象,探究直线y=kx+1(k为常数)与新图象G公共点个数的情况.
【答案】(1)见解析;(2)1<a≤;(3)新图象G公共点有2个.
【解析】
(1)令抛物线的y值等于0,证所得方程的△>0即可;
(2)将点A坐标代入可求m的值,即可求a的取值范围;
(3)分k>0和k<0两种情况讨论,结合图象可求解.
解:(1)设y=0,则0=x2+(1﹣2a)x﹣2a,
∵△=(1﹣2a)2﹣4×1×(﹣2a)=(1+2a)2≥0,
∴x2+(1﹣2a)x﹣2a=0有实数根,
∴该抛物线与x轴总有交点;
(2)∵抛物线与x轴的一个交点为A(m,0),
∴0=m2+(1﹣2a)m﹣2a,
∴m=﹣1,m=2a,
∵2<m≤5,
∴2<2a≤5,
∴1<a≤;
(3)∵1<a≤,且a为整数,
∴a=2,
∴抛物线解析式为:y=x2﹣3x﹣4,
如图,当k>0时,
若y=kx+1过点(﹣1,0)时,直线y=kx+1(k为常数)与新图象G公共点有3个,
即k=1,
当0<k<1时,直线y=kx+1(k为常数)与新图象G公共点有4个,
当k>1时,直线y=kx+1(k为常数)与新图象G公共点有2个,
如图,当k<0时,
若y=kx+1过点(4,0)时,直线y=kx+1(k为常数)与新图象G公共点有3个,
即k=﹣,
当﹣<k<0时,直线y=kx+1(k为常数)与新图象G公共点有4个,
当k<﹣时,直线y=kx+1(k为常数)与新图象G公共点有2个,